

HTW Berlin Prof. Dr.-Ing. Jan Hanno Carstens Siddharth Patel WS 23/24 ETech 1

Siddharth Patel

Application of PID on Differential Drive Robot

HTW Berlin - University of Applied Sciences

(Hochschule für Technik und Wirtschaft Berlin)

Treskowallee 8, 10318 Berlin

WS 2023/2024 - Electrical engineering

HTW Berlin Prof. Dr.-Ing. Jan Hanno Carstens Siddharth Patel WS 23/24 ETech 2

HTW Berlin Prof. Dr.-Ing. Jan Hanno Carstens Siddharth Patel WS 23/24 ETech 3

Preface ... 5

1 Differential Drive... 6

1.1 Aim ... 6

1.2 Differential drive for our case .. 7

1.2.1 geometry_msgs/Twist Message ... 7

1.2.2 Differential drive equation for a two-wheeled robot... 8

1.3 Implementing Equation 1.1 on Arduino and interfacing with the motor driver 9

1.3.1 Sabertooth 2x5 Motor Driver ...10

1.3.2 Simplified serial mode and the I/O connections ..10

1.3.3 SabertoothSimplified.h ...11

(i) ST.motor() ...11

(ii) Other functions and examples ...12

1.3.4 Arduino code for a simple differential drive ..12

(i) Adapting Equation 1.1 for Arduino code ...12

(ii) Measuring Ѡmax , R (Radius) and L (Width) ...14

(iii) Putting it all together and writing the final Arduino code ..15

2 Magic Box ..16

2.1 Breaking Down the Magic Box ...17

2.2 Breaking Down Control Velocity Logic for One* DC Motor ...18

3 Encoder Signals ...20

2.1 Basic Understanding of the Need for Encoders...20

2.2 How to Control DC Motor Using Encoder ..21

2.2.1 Exploring the datasheet of the encoder ...21

Step 1: How to read from Encoder ..23

Step 2: Learn How to Measure the Position of the Motor Shaft...25

HTW Berlin Prof. Dr.-Ing. Jan Hanno Carstens Siddharth Patel WS 23/24 ETech 4

HTW Berlin Prof. Dr.-Ing. Jan Hanno Carstens Siddharth Patel WS 23/24 ETech 5

Preface

I am currently an Electrical Engineering student at HTW Berlin, actively engaged in a

collaborative venture with Professor Jan Carsten's company. My primary focus involves

the practical application of PID control loops on differential drive robots, a nuanced

intersection of academic theory and real-world implementation. This document serves as

a dual-purpose tool—systematically tracking my progress and breaking down the

overarching challenge into manageable components. Collaborating with Professor Jan

Carsten provides a valuable opportunity to bridge the gap between theory and practice.

As I navigate the complexities of PID control for differential drive robots, this document

serves as a transparent record of my contributions and progress in the project.

HTW Berlin Prof. Dr.-Ing. Jan Hanno Carstens Siddharth Patel WS 23/24 ETech 6

Chapter 1:

1 Differential Drive

1.1 Aim

Let's begin by identifying the problem, or, in other words, clarifying our aim. Defining our

objective is crucial, as it provides a clear direction for determining how to achieve it. This

clarity not only simplifies our thought process but also enhances understanding for other

readers, allowing them to grasp the context more easily. Our objective revolves around a

robot equipped with two motors connected to wheels, each motor featuring an encoder (

refer to Picture 1.1 below).

M2 M1

HTW Berlin Prof. Dr.-Ing. Jan Hanno Carstens Siddharth Patel WS 23/24 ETech 7

Picture (1.1)

Assigned with the task of creating Arduino logic, my goal is to establish a framework

where the desired setpoint velocity—let's call them (Vdesired, Ѡdesired)—serves as user

inputs. Here, Vdesired represents the linear resultant velocity of the rover, while Ѡdesired

signifies the angular resultant velocity. As outputs, we anticipate V'' (actual linear

velocity) and W'' (actual angular velocity) in real-world scenarios. The aim is to ensure

that [V'', W''] closely approximates or is nearly equal to the desired setpoint velocity.

Picture 1.2

1.2 Differential drive for our case

Now that we have a clear understanding of the problem, which is to figure out what logic,

algorithm, or perhaps magic we are going to put in the box (refer to picture 1.2), so that

we get the output as we discussed.

According to the professor, the first step is to determine what (Vdesired, Ѡdesired) is and why

we even need them. In order to answer this question, I will take you one step back and

provide information about the ROS function geometry_msgs/Twist Message.

1.2.1 geometry_msgs/Twist Message

According to the Wikipedia, geometry_msgs provides messages for common geometric

primitives such as points, vectors, and poses. The robot is designed in a way where its

computational power or decisions on where to move are derived from the Raspberry Pi.

ROS is employed, and as an output from the Raspberry Pi, a vector with targeted

velocities (Vdesired, Ѡdesired) is obtained. Refer to Picture 1.3 for a better understanding.

Magic Box

?

User defined , Virtual Measured, Translated,

Real

HTW Berlin Prof. Dr.-Ing. Jan Hanno Carstens Siddharth Patel WS 23/24 ETech 8

Picture 1.3 (https://docs.ros.org/en/api/geometry_msgs/html/msg/Twist.html)

So, the calculation part is being done in Raspberry Pi, and the output of this calculation

is transferred to the Arduino, upon which our system is based. I won't be discussing how

we obtain the velocity vector from the Raspberry Pi in this document. We will simply

assume that we somehow acquire the data about the setpoint velocity vector from

somewhere.

Picture 1.4

1.2.2 Differential drive equation for a two-wheeled robot

Now that we know the vector with linear and angular velocity [(Vdesired, Ѡdesired)] is coming

to the Arduino as an input, we first need to find the relation between the robot's

parameters such as the radius of the wheels and the width of the robot. Fortunately, we

already have the answer to this question. There is a transformation function matrix T

that provides the relation between the desired velocity (Vdesired, Ѡdesired) and the angular

velocity of each wheel (Ѡright , Ѡleft). See Picture 1.5 for reference.

Raspberry Pi

geometry_msgs/Vector3

linear

geometry_msgs/Vector3

angular

Arduino

23

https://docs.ros.org/en/api/geometry_msgs/html/msg/Twist.html

HTW Berlin Prof. Dr.-Ing. Jan Hanno Carstens Siddharth Patel WS 23/24 ETech 9

Picture 1.5

Given in Picture 1.5, if R is the radius of the wheels, and V and Ѡ are desired velocities,

then the relationship between the target velocity and the angular speed of each wheel is

shown below:

Equation 1.1

Sources: Picture 1.5 and Equation 1.1

[https://www.uni-

ulm.de/fileadmin/website_uni_ulm/iui.inst.130/Mitarbeiter/oubbati/RobotikWS1113/Oub

batiSkript.pdf]

1.3 Implementing Equation 1.1 on Arduino and

interfacing with the motor driver

Now that we have the relationship between (Vdesired, Ѡdesired) and (Ѡright, Ѡleft), we can begin

by creating the Arduino code, considering a system with two motors, one motor driver

module (specifically, the Sabertooth 2x5, more details on which will be provided later),

one Arduino Mega, and a 4-cell LiPo battery (16.7V).

To develop the Arduino code, we can divide the task into several different parts. Let's

begin by understanding the motor driver we are using and how it interfaces with the

Arduino or any possible Arduino libraries that can be utilized.

M2 M1

2d

V

2R

https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.130/Mitarbeiter/oubbati/RobotikWS1113/OubbatiSkript.pdf
https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.130/Mitarbeiter/oubbati/RobotikWS1113/OubbatiSkript.pdf
https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.130/Mitarbeiter/oubbati/RobotikWS1113/OubbatiSkript.pdf

HTW Berlin Prof. Dr.-Ing. Jan Hanno Carstens Siddharth Patel WS 23/24 ETech 10

1.3.1 Sabertooth 2x5 Motor Driver

Picture 1.6 Sabertooth 2x5 Motor driver

Sources: [https://www.generationrobots.com/media/sabertooth2x5-user-guide.pdf]

Sabertooth 2x5 can be used with Arduino using several different methods, such as analog

signals, radio signals, serial communication, and many more (feel free to explore them in

the Sabertooth 2x5 user guide here). In our project, I have decided to work with the

simplified serial mode using the SabertoothSimplified.h library. The reason for this choice

is that the available public functions in the library make it easy for the user to write

complex code.

1.3.2 Simplified serial mode and the I/O connections

The first step in using the simplified serial mode on the Sabertooth 2x5 is to turn on dip

switches 1, 3, 5, and 6. This step is crucial as it is the only way to work with serial mode

at (most probably) 9600 baud rate.

After setting the Sabertooth 2x5 to simplified serial mode, it's time to establish the I/O

connections to the Arduino and the motors.

Picture 1.7 I/O Connections

S1 ----->> TX0 Arduino

VCC ----->> +5v Arduino

GND ----->> GND Arduino

BAT + ----->> LiPo Positive

BAT − ----->> LiPo Negative

https://www.generationrobots.com/media/sabertooth2x5-user-guide.pdf
https://www.generationrobots.com/media/sabertooth2x5-user-guide.pdf

HTW Berlin Prof. Dr.-Ing. Jan Hanno Carstens Siddharth Patel WS 23/24 ETech 11

Note: The connection for the motor to the Sabertooth can vary, as we need to calibrate the

system for forward, backward, or turning motions. Your defined front and back of the

robot may be different from mine. Therefore, for calibration, connect the motor in any

manner you prefer. Once the code is completed, set Vdesired = 0 and Ѡdesired = 1. With these

values, the robot is expected to move in the left direction because Ѡright > 0 and Ѡleft < 0,

causing a left turn. If this does not happen, change the motor terminals and calibrate it

to take a left turn when (Vdesired = 0, Ѡdesired = 1).

1.3.3 SabertoothSimplified.h

Reference: [https://documentation.help/Sabertooth/documentation.pdf]

As discussed in section 1.3.1, we will be using the SabertoothSimplified.h library (refer to

the information in the reference). From this library, we will utilize a function called

ST.motor() responsible for controlling the motor using bytes. Please refer to the picture

below to understand the function.

(i) ST.motor()

Picture 1.7

Source: Picture 1.7 and section content

[https://documentation.help/Sabertooth/documentation.pdf]

As seen in Picture 1.7, the function accepts two parameters: one being the motor number,

and the other being power, an integer ranging from –127 to 127.

−127 // maximum speed in the opposite direction

+127 // maximum speed in the regular direction

https://documentation.help/Sabertooth/documentation.pdf
https://documentation.help/Sabertooth/documentation.pdf

HTW Berlin Prof. Dr.-Ing. Jan Hanno Carstens Siddharth Patel WS 23/24 ETech 12

(ii) Other functions and examples

Under Classes >> Class Members >> Functions in the Sabertooth documentation PDF

(here), you can find other useful functions. Additionally, under the section >> Examples,

a list of examples can be found (Picture 1.8).

Picture 1.8 (a) Availabe functions ,(b) Examples

1.3.4 Arduino code for a simple differential drive

(i) Adapting Equation 1.1 for Arduino code

Equation 1.1

Performing matrix multiplication in Equation 1.1, we get:

Equation 1.1 (a)

(a) (b)

https://documentation.help/Sabertooth/documentation.pdf

HTW Berlin Prof. Dr.-Ing. Jan Hanno Carstens Siddharth Patel WS 23/24 ETech 13

After simplification...

Equation 1.1 (b)

Equation 1.1 (c)

Note: In Picture 1.5, the width of the rover is represented as 2d. Therefore, substituting

L = 2d, we get:

Equation 1.2

When implementing Equation 1.2 to create Arduino logic, the resulting code might look

like this:

float W_left = (v_liner - (w_rover / 2.0)* w_angular)/r_wheel;
float W_right = (v_liner + (w_rover / 2.0)* w_angular)/r_wheel;

HTW Berlin Prof. Dr.-Ing. Jan Hanno Carstens Siddharth Patel WS 23/24 ETech 14

(ii) Measuring Ѡmax , R (Radius) and L (Width)

To create the Arduino code, it is essential to specify each parameter. For instance, the

formula depends on the radius of the wheels and the width of the rover, along with the

user-input parameters Vdesired and Ѡdesired.

in this scenario, the measurement of R radius and L width requires the use of a measuring

tool. Personally, I utilized a digital vernier caliper to measure the radius of the wheels

and a ruler for determining the width of the robot. This approach was chosen because the

radius was on the scale of millimeters, while the width was on the scale of centimeters.

Additionally, a digital RPM meter was employed to measure the maximum angular

velocity of the wheels (at full-charged LiPo battery of 16.4V). These values were recorded

in an Excel file, as illustrated below, and any necessary calculations were performed. You

can access the Excel file here:

[Link to the Excel file]: Ѡmax_calculation.xlsx

Picture 1.9 Representation of example values

At this point, errors resulting from system or tool measurements are not being considered.

I plan to address these once the logic is ready. It's also worth noting that there may be a

possibility of using different wheels and a different size for the robot (varying R and L)

towards the end of the project. However, my current focus is not on this aspect.

In addition to this, in the Excel file, you will find the calculation to find the maximum

linear and angular velocities (Vdesired and Ѡdesired) that you can enter. To achieve this, I

defined constants such as radius (R), width (L), and the maximum RPM of the motor at

16.7 V. Afterward, I wrote the Excel formula for Equation 1.2. I also implemented logic in

the Arduino code that converts (Ѡright, Ѡleft) to the byte format which the motor driver

(Sabertooth 2x5) can use to interpret the velocity. The logic in the Arduino code is shown

below:

// Normalize the motor velocities to the range -127 to 127.
int motor_left = round(255 * v_left / (2 * W_max));
int motor_right = round(255 * v_right / (2 * W_max));

https://studenthtwberlinde-my.sharepoint.com/personal/siddharth_patel_student_htw-berlin_de/_layouts/15/Doc.aspx?sourcedoc=%7B42E569B9-9D06-49F1-B10F-85CA55F7304E%7D&file=Mappe9.xlsx&action=default&mobileredirect=true

HTW Berlin Prof. Dr.-Ing. Jan Hanno Carstens Siddharth Patel WS 23/24 ETech 15

(iii) Putting it all together and writing the final Arduino code

Reference: [Sabertooth Simplified Serial Library for Arduino][Sabertooth 2x5 User’s

Guide][Einfuhrung in die Robotik]

#include <SabertoothSimplified.h>

SabertoothSimplified ST; // We'll name the Sabertooth object ST.
// For how to configure the Sabertooth, see the DIP Switch Wizard for
// http://www.dimensionengineering.com/datasheets/SabertoothDIPWizard/start.htm
// Be sure to select Simplified Serial Mode for use with this library.
// This sample uses a baud rate of 9600.
//
// Connections to make:
// Arduino TX->1 -> Sabertooth S1
// Arduino GND -> Sabertooth 0V
// Arduino VIN -> Sabertooth 5V (OPTIONAL, if you want the Sabertooth to power the Arduino)
//
// If you want to use a pin other than TX->1, see the SoftwareSerial example.
void setup()
{
SabertoothTXPinSerial.begin(9600); // This is the baud rate you chose with the DIP switches.
}

void loop()

{
float v_liner = 0; // linear velocity of rover in m/s
float w_angular = 0; // angular velocity of rover in rad/s
float r_wheel = 0.04; // radius of the wheels in m
float w_rover = 0.48; // width of the rover in m
float W_max = 13.51;

// The calculations below convert the input parameters to motor velocities.
// These calculations assume the left and right wheels have the same speed.
float W_left = (v_liner - (w_rover / 2.0)* w_angular)/r_wheel;
float W_right = (v_liner + (w_rover / 2.0)* w_angular)/r_wheel;

// Normalize the motor velocities to the range -127 to 127.
int motor_left = round(255 * W_left / (2 * W_max));
int motor_right = round(255 * W_right / (2 * W_max));

// Apply the motor velocities.
ST.motor(1, motor_left); // Go forward at full power.
ST.motor(2, motor_right); // Go forward at full power.`

}

https://documentation.help/Sabertooth/documentation.pdf
https://www.generationrobots.com/media/sabertooth2x5-user-guide.pdf
https://www.generationrobots.com/media/sabertooth2x5-user-guide.pdf
https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.130/Mitarbeiter/oubbati/RobotikWS1113/OubbatiSkript.pdf
http://www.dimensionengineering.com/datasheets/SabertoothDIPWizard/start.htm

HTW Berlin Prof. Dr.-Ing. Jan Hanno Carstens Siddharth Patel WS 23/24 ETech 16

Chapter 2:

2 Magic Box

This chapter is here to remind us of our main goal from Section 1.1 – to figure out the

logic behind the illustration in the last section. Remember that Magic Box with a big

question mark? That's what we're trying to understand to control velocities like Ѡ”
right and

Ѡ”
left. In this chapter, I will explain the logic I'm thinking of, or what logic you might

consider. The next chapter will break down my plan and the Magic Box logic into basic

parts so that, in the end, we can put it all together and get what we want. If it doesn't

work out, we'll have to figure out where the logic went wrong and fix it. It's all about

working towards our dream, step by step.

Picture 2.1

Magic Box

?

User defined , Virtual Measured, Translated, Real

HTW Berlin Prof. Dr.-Ing. Jan Hanno Carstens Siddharth Patel WS 23/24 ETech 17

2.1 Breaking Down the Magic Box

In the first chapter, we learned a way to turn (Vdesired and Ѡdesired) into (Ѡright, Ѡleft), and

I'll call these (Ѡ’right, Ѡ’left) with a 'prim' to show there's some error. Check out the

illustration below.

Picture 2.2

Now, let's add more details to the picture by introducing two additional boxes for the

"controlling velocity of the one DC motor Logic." These will produce (Ѡ’’right, Ѡ’’left),

representing controlled velocities. This implies that the error is reduced and becomes

nearly equal to ≈ (Ѡright, Ѡleft). If we translate this into V’’ and Ѡ’’, it can be expressed as

(V’’, Ѡ’’) ≈ (Vdesired, Ѡdesired). See the updated illustration below.

Picture 2.3

Referring to Figure 2.3, if we successfully develop a logic for controlling the velocity of one

DC motor, we can eventually integrate all components. Let me break down what needs to

be done to control the motor's velocity.

[Note: It's important to note that when I use the term "Control", such as in Controlling

Velocity or Controlling Position, I mean achieving a target point (velocity or position) with

minimal error after going through the feedback control loop. We label these as controlled

velocity or controlled point as they've undergone a process of reducing error through

sensor feedback. If I want to refer to the regular output, I might use the term "Drive." For

example, controlling* the motor and driving* the motor represent different aspects in this

context.]

User defined , Virtual Measured, Translated, Real

 Rest of the logic

User defined , Virtual Measured , Translated, Real

HTW Berlin Prof. Dr.-Ing. Jan Hanno Carstens Siddharth Patel WS 23/24 ETech 18

2.2 Breaking Down Control Velocity Logic for One* DC

Motor

To better understand the Control Velocity logic, I've put together an illustration for you.

Take a moment to review it, and I'll provide a detailed explanation of each step shortly.

Picture 2.4

The above-mentioned illustration (Picture 2.4) depicts the method or short planning of achieving the

goal of controlling the velocity of a DC motor. As you can see, the first box at the top states "How to

control the velocity of the DC motor," which leads to four steps. The first step involves velocity

measurement using an encoder. The second step is filtering the velocity signals, the third involves

applying feedback loop using a PI controller, and the fourth and final step is finding the kp and ki

parameters (each step will be explained later in more detail).

HTW Berlin Prof. Dr.-Ing. Jan Hanno Carstens Siddharth Patel WS 23/24 ETech 19

Picture 2.5

Also, in the first step, "velocity measurement using Encoder," we first need to understand how to control

a DC motor with an encoder. That's why I expand the chart by adding one more branch on how to

control a DC motor using an encoder, which also has four subparts. It starts with step 1, learning how

to read from the encoder. Then, we progress to understanding how to measure the position of the motor

shaft, and so on.

Let's start from the bottom and work our way up to achieve our goal of controlling the DC motor's

velocity.

HTW Berlin Prof. Dr.-Ing. Jan Hanno Carstens Siddharth Patel WS 23/24 ETech 20

Chapter 3:

3 Encoder Signals

2.1 Basic Understanding of the Need for Encoders

Now that we understand the concept of differential drive and have defined our desired

velocities, Vdesired and Ѡdesired, we have examined how to convert them into angular

velocities for each wheel, namely Ѡright and Ѡleft. It is now time to proceed, keeping in mind

that our goal is to develop a logic for a feedback loop for this system using PID. If you need

a reminder of our aim, please refer to section 1.1 Aim.

In our case, a feedback loop involves user-defined setpoint velocities, represented as

numerical values. When we apply these setpoint velocities using the code outlined in

section 1.3, we observe that it directly translates the setpoint velocities into initial angular

velocities. Subsequently, we use specific lines of code to convert them into bytes, which

are then sent to the Sabertooth motor driver, resulting in real-life movement of the

wheels.

However, it is true that due to varying load situations on the rover, the translated

velocities may differ. Consider the following example: if a command for Vdesired = 0.5 and

Ѡdesired = 0 is sent, indicating a desire for the rover to move forward at a speed of 0.5 m/s,

external factors such as a slope, rough surface, or excessive weight may cause the rover

to only achieve a speed of, for instance, 0.35 m/s. The error caused by the load prevents

the rover from reaching the desired speed, highlighting the need for a feedback loop.

HTW Berlin Prof. Dr.-Ing. Jan Hanno Carstens Siddharth Patel WS 23/24 ETech 21

Continuing with the same example, let's delve further into the feedback loop. We need a

sensor that can determine the actual speed at which the rover is moving in real life. This

sensor sends this data back to the logic, where the data is compared. For instance, if

Vdesired = 0.5 corresponds to Ѡright = x and Ѡleft = y, the sensor may read Ѡright* = x* and

Ѡleft* = y*. It is fair to say that (Ѡright, Ѡleft) ≠ (Ѡright*, Ѡleft*) due to the error.

Our objective is to minimize the difference between (Ѡright, Ѡleft) and (Ѡright*, Ѡleft*) to

achieve a resultant velocity equal to the desired parameter. This is accomplished through

PID control, which stands for Proportional, Integral, and Differential control. However,

detailed discussion of PID control is reserved for a different section. In this section, we

will first explore what an encoder is and how we can read data from the encoder for later

use in our final PID control loop.

2.2 How to Control DC Motor Using Encoder

Source and Credit for the Section: [

https://youtu.be/dTGITLnYAY0?si=GPbzjtLWgdOMSBbo]

Picture 3.1

2.2.1 Exploring the datasheet of the encoder

In our project, we are using a magnetic encoder that was previously connected to the

motor shaft. Please take a look at the company-provided diagram of the encoder with the

motor.

Picture 3.2

https://youtu.be/dTGITLnYAY0?si=GPbzjtLWgdOMSBbo

HTW Berlin Prof. Dr.-Ing. Jan Hanno Carstens Siddharth Patel WS 23/24 ETech 22

As you can observe in the diagram, the motor utilized in our project comprises three

main components. The first part is the Magnetic Encoder, the second part is the Motor,

and the third part is the Gearbox. (Datasheets for each component can be found here.)

Datasheet: Magnetic Encoder [https://cloud.htw-

berlin.de/apps/files/?dir=/SHARED/Technik/Rover/Motor%2C%20Main%20Drive&openfi

le=140523162]

Datasheet: Motor [https://cloud.htw-

berlin.de/apps/files/?dir=/SHARED/Technik/Rover/Motor%2C%20Main%20Drive&openfi

le=140514652]

Datasheet: All Combined [https://cloud.htw-

berlin.de/apps/files/?dir=/SHARED/Technik/Rover/Motor%2C%20Main%20Drive&openfi

le=140148932]

Important things to note from this datasheet include the PPR (pulses per rotation) for

the encoder and the wire configuration of the encoder. Please refer to the picture below,

which displays both pieces of information.

Picture 3.3

https://cloud.htw-berlin.de/apps/files/?dir=/SHARED/Technik/Rover/Motor%2C%20Main%20Drive&openfile=140523162
https://cloud.htw-berlin.de/apps/files/?dir=/SHARED/Technik/Rover/Motor%2C%20Main%20Drive&openfile=140523162
https://cloud.htw-berlin.de/apps/files/?dir=/SHARED/Technik/Rover/Motor%2C%20Main%20Drive&openfile=140523162
https://cloud.htw-berlin.de/apps/files/?dir=/SHARED/Technik/Rover/Motor%2C%20Main%20Drive&openfile=140514652
https://cloud.htw-berlin.de/apps/files/?dir=/SHARED/Technik/Rover/Motor%2C%20Main%20Drive&openfile=140514652
https://cloud.htw-berlin.de/apps/files/?dir=/SHARED/Technik/Rover/Motor%2C%20Main%20Drive&openfile=140514652
https://cloud.htw-berlin.de/apps/files/?dir=/SHARED/Technik/Rover/Motor%2C%20Main%20Drive&openfile=140148932
https://cloud.htw-berlin.de/apps/files/?dir=/SHARED/Technik/Rover/Motor%2C%20Main%20Drive&openfile=140148932
https://cloud.htw-berlin.de/apps/files/?dir=/SHARED/Technik/Rover/Motor%2C%20Main%20Drive&openfile=140148932

HTW Berlin Prof. Dr.-Ing. Jan Hanno Carstens Siddharth Patel WS 23/24 ETech 23

Picture 3.4

From pictures 3.3 and 3.4, it is evident that the PPR (pulses per rotation) value for our

encoder is 12, with the yellow wire representing output A and the green wire representing

output B. Let's explore where we will apply this information.

Step 1: How to read from Encoder

So, a magnetic encoder operates by detecting changes in the magnetic field caused by the

magnet attached to the motor shaft. In theory, if output A triggers first, then the motor is

moving in a clockwise direction, and if output B triggers first, then the motor is moving

in a counterclockwise direction. Let's attempt to interpret this through Arduino code.

#define ENCA 2 // Yellow
#define ENCB 3 // Green

void setup() {
Serial.begin(9600);
pinMode(ENCA,INPUT);
pinMode(ENCB,INPUT);
}

void loop() {
int a = digitalRead(ENCA);
int b = digitalRead(ENCB);
Serial.print(a*5);
Serial.print(" ");
Serial.print(b*5);
Serial.println();
}

Pin connections:

Yellow (A) Encoder --> Digital pin 2 Arduino

Green (B) Encoder --> Digital pin 3 Arduino

Vcc --> 5V

Gnd --> Gnd

Result: When the motor was turned in the clockwise direction, we obtained the following

graph with the first trigger on output A. Conversely, when the motor was turned in the

counterclockwise direction, we observed the first trigger on output B.

HTW Berlin Prof. Dr.-Ing. Jan Hanno Carstens Siddharth Patel WS 23/24 ETech 24

Picture 3.5

Picture 3.6

[Value 1 = A and Value 2 = B] Output A triggers first -- Clockwise

[Value 1 = A and Value 2 = B] Output B triggers first -- Counterclockwise

HTW Berlin Prof. Dr.-Ing. Jan Hanno Carstens Siddharth Patel WS 23/24 ETech 25

Step 2: Learn How to Measure the Position of the Motor Shaft

Now that we know how to read from the encoder, we can attempt to measure the

position of the motor shaft. This can be achieved by storing values in a variable each

time the motor turns. For instance, if it turns in a clockwise direction, we add 1 to the

variable, and if it turns in an anticlockwise direction, we subtract 1 from the variable.

The starting value will be zero.

#include <util/atomic.h> // For the ATOMIC_BLOCK macro

#define ENCA 2 // YELLOW
#define ENCB 3 // WHITE

volatile int posi = 0; // specify posi as volatile:

https://www.arduino.cc/reference/en/language/variables/variable-scope-qualifiers/volatile/

void setup() {
Serial.begin(9600);
pinMode(ENCA,INPUT);
pinMode(ENCB,INPUT);
attachInterrupt(digitalPinToInterrupt(ENCA),readEncoder,RISING);
}

void loop() {
// Read the position in an atomic block to avoid a potential
// misread if the interrupt coincides with this code running
// see: https://www.arduino.cc/reference/en/language/variables/variable-scope-qualifiers/volatile/
int pos = 0;
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
pos = posi;
}

Serial.println(pos);
}

void readEncoder(){
int b = digitalRead(ENCB);
if(b > 0){
posi++;
}
else{
posi--;
}
}

1.

If the motor is turned with a constant speed, it will exhibit a linear graph. The code is

structured to store the points by which the motor shaft has turned. When we plot a

https://www.arduino.cc/reference/en/language/variables/variable-scope-qualifiers/volatile/
https://www.arduino.cc/reference/en/language/variables/variable-scope-qualifiers/volatile/

HTW Berlin Prof. Dr.-Ing. Jan Hanno Carstens Siddharth Patel WS 23/24 ETech 26

graph of the change in position versus time, it will be linear with a positive slope if the

motor turned in a clockwise direction with constant speed and a negative slope if the

motor was turned anticlockwise with constant speed. Please take a look at the resulting

graph.

[Value 1 = position]

	Preface
	1 Differential Drive
	1.1 Aim
	1.2 Differential drive for our case
	1.2.1 geometry_msgs/Twist Message
	1.2.2 Differential drive equation for a two-wheeled robot

	1.3 Implementing Equation 1.1 on Arduino and interfacing with the motor driver
	1.3.1 Sabertooth 2x5 Motor Driver
	1.3.2 Simplified serial mode and the I/O connections
	1.3.3 SabertoothSimplified.h
	(i) ST.motor()
	(ii) Other functions and examples

	1.3.4 Arduino code for a simple differential drive
	(i) Adapting Equation 1.1 for Arduino code
	(ii) Measuring Ѡmax , R (Radius) and L (Width)
	(iii) Putting it all together and writing the final Arduino code

	2 Magic Box
	2.1 Breaking Down the Magic Box
	2.2 Breaking Down Control Velocity Logic for One* DC Motor

	3 Encoder Signals
	2.1 Basic Understanding of the Need for Encoders
	2.2 How to Control DC Motor Using Encoder
	2.2.1 Exploring the datasheet of the encoder
	Step 1: How to read from Encoder
	Step 2: Learn How to Measure the Position of the Motor Shaft

