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Preface

One vivid memory from my childhood is the time when LED TVs

were gaining popularity in India. I constantly wondered how the images

were displayed and what those tiny, intricate components—like miniature

buildings—were doing inside. I soon realized that the failure of even

one small part could stop the entire system from working. This taught

me an important lesson: there are countless ways for a circuit to fail, but

only a few precise combinations that allow it to function flawlessly. That

insight stayed with me and shaped my approach to problem-solving in

electronics.

Through these early experiences, I came to a deeper realization about

how computers, electronics, and even machines like water pipes all

share something fundamental: they behave like laborers—obedient, yet

extremely limited laborers. Why do I call them ”super-dumb”? Because

they only follow instructions without question or deviation. Take, for

example, a green LED and a blue LED. Neither knows how to collaborate

or blend their light to create a cyan color on their own. They simply light

up when the correct voltage is applied. The intelligence to make them

work together, to adjust their brightness and achieve the desired color,

lies with us. We design the circuit, we provide the instructions, and it’s

through our guidance that these ”laborers” fulfill their purpose.

I applied this same principle early on, combining different circuits and

components to create devices with new, unique functions. This hands-

on experimentation not only fueled my creativity but also expanded my

knowledge of circuits, integrated circuits (ICs), sensors, and eventually

coding. However, in 2023, I discovered something that took my un-

derstanding to the next level—a development by two visionary minds,

Keenan Wyrobek and Eric Berger. These two pioneers, who shared my

passion for robotics and scientific innovation, were far ahead of me in

their realization of just how challenging robotics development can be.

With so many components at play, countless things can go wrong, and

only a few will function as intended. They referred to this ongoing strug-

gle as ”reinventing the wheel”—a concept that resonated deeply with my
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own experiences in building and troubleshooting complex systems.

Imagine if, every time you made a pizza, you had to buy a farm,

grow the grains, make the dough, and ferment the cheese yourself. It

would take forever! Instead, we buy ingredients from the store and make

the pizza. Wyrobek and Berger applied the same logic to robotics by

creating ROS (Robot Operating System), which allows different parts (or

”laborers”) to communicate with each other. The best part is that you

don’t need to reinvent the wheel—someone else has already created it,

and you can focus on putting the parts together to build complex systems

or robots.

In 2023, I started working with my professor, Prof. Dr.-Ing. Jan

Hanno Carstens, on developing a robot for his company. I was forced to

learn ROS because we were using it for our project. It took me a long

time, partly because I found the ROS documentation a bit overwhelming,

and I wasn’t sure where to start. So, during my vacation, I decided to

document everything I had learned in this book, using one of my favorite

approaches to learning.

Let me explain my approach with a great example that I used in

another area of my life. When I came to Germany, I had to learn the

German language to study at a prestigious German university. Learning

a language was a big challenge for me because my mind works logically,

If something doesn’t make sense, I find it hard to learn. Languages don’t

have formulas you can memorize and then pass an exam the next day.

You need to invest time every day for at least a year or two to become

fluent.

But I didn’t have that kind of time, so I developed a strategy. I

realized that while German may have thousands of verbs, only a few

hundred are used in daily conversation, especially in an engineering

context. By focusing on these 200–300 verbs, I was able to learn the

language quickly. This approach worked—I earned a scholarship, got

a job at my university, and competed successfully with native German

speakers.

That’s exactly what I’m doing with this book. I’ve compiled all the

most common ROS commands and concepts you’ll need to get started

quickly. This book is for people who want to learn ROS but don’t have

a year to study—they have a job starting next week! By going through

this book, they can probably manage just fine.

In my next book, I plan to present 10 ROS projects that I created,
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ranging from simple to complex, to show you how to apply ROS in

real-world scenarios.
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Abstract

This book is designed to offer an accelerated yet comprehensive intro-

duction to the Robot Operating System (ROS), aimed at individuals who,

like myself, may not have the luxury of years to master a complex sys-

tem. Whether you’re a researcher, engineer, or hobbyist, ROS provides

a powerful framework that allows you to focus on innovation without

constantly ”reinventing the wheel.”

ROS emerged from a fundamental need to streamline the develop-

ment of robotics systems—a challenge that has resonated with roboticists

for years. In this book, I trace the origins of ROS, from its creation by

Keenan Wyrobek and Eric Berger as a solution to the inefficiency of

duplicating low-level code for every new robotics project, to its present

status as a global standard in the field. The opening chapters explain how

ROS was born from a desire to enable developers to focus on building

intelligent algorithms, rather than repeatedly coding the same infrastruc-

ture from scratch.

At its core, ROS is a middleware—a system that sits between the

robot’s hardware and the software, providing modular tools that allow

components to communicate seamlessly. The book introduces key con-

cepts like nodes, topics, services, and actions, explaining how each el-

ement plays a role in building complex systems with reusable, scalable,

and efficient components. By drawing on these building blocks, you’ll

learn how to write robotics software that’s both powerful and adaptable,

without needing to start from scratch for every project.

After introducing the ROS framework, the book walks you through

setting up your ROS development environment, using step-by-step in-

structions that focus on simplicity and clarity. You’ll learn how to install

ROS Noetic, create workspaces, and develop your first ROS publisher

and subscriber scripts. These initial projects will get you up and running

quickly, providing practical experience in managing nodes, publishing

data to topics, and processing messages in real-time.

Moving beyond the basics, the book delves into more advanced con-

cepts such as ROS services and actions, parameter servers, and how to

record and play back data using ROS bag files. Each concept is broken

down with clear explanations and practical examples, ensuring that you
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can apply these tools in real-world scenarios.

Throughout the book, my goal is to minimize the steep learning curve

that often comes with ROS. Drawing from my own experience, I’ve

compiled a list of essential commands, functions, and best practices that

will help you navigate the ROS ecosystem efficiently. The final chapters

explore how to use launch files to simplify the process of running multiple

nodes, and how to manage your workspace in a way that scales as your

projects grow more complex.

With the help of this book, you’ll not only grasp the fundamentals

of ROS but also gain the confidence to start applying your knowledge

immediately. In much the same way I approached learning German

by focusing on its most essential elements, this book offers a targeted

approach to learning ROS—distilling the vast and often complex docu-

mentation into the core concepts and commands that will get you up and

running quickly.

For those eager to move beyond the basics, stay tuned for my next

book, where I will dive into 10 real-world ROS projects—demonstrating

how to build everything from simple robots to fully autonomous systems

using the power of ROS.
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CHAPTER 1. WHAT IS ROS?

1.1 History of ROS

ROS (Robot Operating System) has become a standard in the field

of robotics, widely adopted by researchers, hobbyists, and even large

robotics companies. But the path to its current success was not straight-

forward. The history of ROS goes back to the mid-2000s, and its begin-

nings were humble, born out of the need to solve a common problem in

robotics.

1.1.1 The Stanford Period

ROS started as a personal project of Keenan Wyrobek and Eric Berger

while they were at Stanford University. During that time, robotics de-

velopment faced a serious challenge: developers had to spend too much

time reinventing basic software infrastructure, such as sensor drivers and

actuator controllers, for every new project. As a result, there was little

time left for developing advanced robotic intelligence.

Even within the same organizations, developers would re-implement

these core systems for each project. This situation was frustrating for

robotics engineers, including Keenan and Eric, who wanted to focus on

developing complex robotic algorithms instead of constantly rebuilding

the wheel.

What does ”Reinventing the Wheel” Mean?

”Reinventing the wheel” refers to the unnecessary duplication of work

by recreating something that already exists. In the case of robotics, this

meant writing the same code for basic robot functionality over and over

again, instead of building upon previous work.
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Analogy: Reinventing the Wheel

Imagine your father plants a tree and waters it every day for

his entire life. By the time he’s 60, the tree is large and bears

delicious fruit. However, instead of continuing to nurture this

tree, you decide to plant your own tree from scratch. This new

tree takes years to grow, while your father’s tree could have been

even more fruitful with a little extra care.

This is the essence of what ROS aimed to solve. Instead of each

robotics project starting from scratch, developers could build

upon the infrastructure created by others, allowing them to focus

on creating smarter, more complex robots.

Father plants

a tree

Son continues to

nurture the tree

Son plants

a new tree

(Reinvents

the wheel)
Grows faster

Slower progress

Figure 1.1: Analogy of Reinventing the Wheel vs. Building on Existing

Work

In 2006, Keenan and Eric founded the Stanford Personal Robotics

Program to address this issue. Their goal was to create a framework that

allowed different processes (nodes) to communicate with each other and

provide tools to help build code on top of this foundation. The testbed

for this framework was a robot they built, known as the Personal Robot.

They created 10 of these robots and distributed them to universities for

development and testing purposes.

1.1.2 Building the Foundation

The Stanford Personal Robotics Program laid the foundation for ROS.

The key idea was to have a common framework where developers could
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share software components, such as drivers and communication systems.

This would allow roboticists to focus on creating smarter, more innova-

tive applications rather than rewriting basic infrastructure. ROS was

designed to scale and adapt to different robots and environments.

The Foundation of ROS

The Stanford Personal Robotics Program aimed to create a uni-

versal framework for robot development. This framework al-

lowed different robot processes to communicate seamlessly, and

it came with tools to build code on top of the existing infrastruc-

ture. The robot built for this program, the Personal Robot, was

distributed to universities to promote ROS development.

The idea was simple but revolutionary: let roboticists collaborate and

build on top of each other’s work. Much like the analogy of the father’s

tree, ROS would allow developers to nurture and grow from the work

already done by others, avoiding the pitfalls of reinvention.

The development of ROS during the Stanford Period is well docu-

mented. The vision was clearly laid out in a fundraising deck from 2006,

which highlighted the need to stop reinventing the wheel and instead

build a reusable framework for robotics software.

1.2 Challenges in Robotics Development

Building robots is inherently complex due to the wide range of hardware

and software involved. Historically, roboticists often faced the challenge

of writing every piece of the operating code from scratch, typically in

low-level languages like C. Even simple tasks, such as making a light

blink, could take weeks of effort due to the numerous components in-

volved.

Example: Imagine trying to code a blinking light indicator for your

robot. You would need to:
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Challenges in Coding a Blinking Light Indicator

• Create the firmware controller: Write the low-level code

to manage the microcontroller.

• Manage serial communications: Ensure the microcon-

troller can communicate with a host computer.

• Create higher-level software nodes: Build logic to de-

cide when the light should blink.

• Develop debugging and visualization tools: Ensure all

the sensors, actuators, and code are functioning correctly.

This entire process represents a significant time and effort investment

for what should be a simple task.

Create Firmware

Controller

Manage Serial

Communication

Develop

High-Level

Software Nodes

Debugging and

Visualization

Figure 1.2: Robotic Development Workflow: Even a simple task like a

blinking light requires numerous steps.

The complexity doesn’t stop here. For each new project or robot,

engineers often had to repeat these steps. This process of ”reinventing the

wheel” for every project significantly slowed down the pace of robotics

development, which led to the birth of ROS.

1.3 The Birth of ROS

The challenge of re-implementing basic robotic functionality for every

project led to the creation of ROS (Robot Operating System). Born as

an open-source middleware, ROS provides a set of standardized tools

and libraries that drastically reduce the time needed to develop robotic

systems.

Initially developed at Stanford University in 2006 as part of the

Stanford Personal Robotics Program, ROS was created with the goal

of offering reusable software infrastructure, enabling researchers and
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developers to focus on building intelligent systems, instead of wasting

time on reimplementing low-level drivers and communication protocols.

ROS simplifies robotic development by providing:

Key Benefits of ROS

• Open-source: Freely accessible, allowing for global col-

laboration.

• Reduced development time: Built-in tools, drivers, and

libraries for common robotics tasks.

• Modular design: Promotes reusable components and al-

lows for easy system scaling.

• Platform independence: Initially developed for Linux,

ROS now has experimental support for macOS and Win-

dows.

1.4 What ROS Is and Isn’t

ROS is often misunderstood as a traditional operating system, but it is

more accurately described as a meta-operating system or middleware.

Key Benefits of ROS is:

• An open-source middleware that sits on top of a tradi-

tional operating system (like Ubuntu).

• A development environment with tools for building

robotic systems, including visualization (Rviz), commu-

nication libraries, and introspection tools.

• A packaging system that supports the distribution of robot

software in reusable modules. ROS uses the colcon com-

mand to build and manage these packages.
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ROS is not:

• A computer operating system. It is not a replacement for

Linux, macOS, or Windows. It runs on top of these OSs.

• A programming language. ROS programs are written

in languages like C++ and Python. Other experimental

languages include Java, Lisp, and Octave.

• A hard real-time environment. ROS is not suitable for

systems requiring hard real-time constraints.

• A development environment. ROS is used with existing

IDEs or text editors like Sublime or VSCode.

1.5 Why Learn ROS?

ROS has emerged as the standard framework for developing robotic

systems due to several key advantages.

1.5.1 Open Source

ROS is entirely open-source, which means the community is constantly

contributing to and improving the software. The collaborative nature of

ROS allows developers to share their work, learn from each other, and

continuously improve robotic development worldwide.

1.5.2 Reusability and Modularity

With ROS, you don’t have to start from scratch every time. The frame-

work provides numerous open-sourced tools and libraries, which allow

developers to easily contribute, adapt, and share software.

1.5.3 Support for Development Tools

ROS comes with built-in tools to assist with development. For example:
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Development Tools Examples:

• Rviz: A 2D/3D visualization tool for representing robot

data like sensor information and environments.

• Gazebo: A simulation tool that allows you to test robotic

systems in a virtual environment before deploying on ac-

tual hardware.

1.5.4 Rapid Testing and Prototyping

ROS provides a platform where you can quickly prototype robotic sys-

tems using simulators like Gazebo or test data using bag files (rosbags).

This allows you to refine your system design before deploying it to the

physical robot.

1.6 Languages Supported by ROS

ROS natively supports several programming languages, providing flexi-

bility to developers based on their needs.

1.6.1 Officially Supported Languages

ROS is primarily used with:

Officially Supported Languages

• C++: Often used for performance-critical tasks in robotics

due to its speed and control over hardware.

• Python: Highly popular for writing simple and quick

scripts, offering ease of use and rapid development.

• Lisp: Historically supported but less commonly used in

modern ROS applications.
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1.6.2 Community-Driven Libraries

ROS also has community-driven support for additional languages, en-

abling greater flexibility for developers.

Community-Driven Libraries

• Java: Enables the integration of robotics into Java-based

systems.

• JavaScript: Can be used in web-based applications for

robotics control.

• Lua: A lightweight scripting language useful for specific

robotic tasks.

1.7 Conclusion

With the vast amount of existing ROS 1 libraries and new features in ROS

2, roboticists can leverage these tools to develop powerful and scalable

robotic systems. ROS is already a major player in the robotics field, and

learning it will significantly enhance your ability to create and deploy

robotics solutions efficiently.

Let’s dive deeper into ROS and explore its capabilities!
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