
Intro to

Robot Operating System

by Siddharth Patel

vol.1

In memory

of

Ashokbhai Babubhai Patel

Intro to Robot Operating

System - Using ROS in

Python

Learn to program Robots using the famous Robot

Operating System (ROS) framework in Python

Siddharth Patel

September 28, 2024

Preface

One vivid memory from my childhood is the time when LED TVs

were gaining popularity in India. I constantly wondered how the images

were displayed and what those tiny, intricate components—like miniature

buildings—were doing inside. I soon realized that the failure of even

one small part could stop the entire system from working. This taught

me an important lesson: there are countless ways for a circuit to fail, but

only a few precise combinations that allow it to function flawlessly. That

insight stayed with me and shaped my approach to problem-solving in

electronics.

Through these early experiences, I came to a deeper realization about

how computers, electronics, and even machines like water pipes all

share something fundamental: they behave like laborers—obedient, yet

extremely limited laborers. Why do I call them ”super-dumb”? Because

they only follow instructions without question or deviation. Take, for

example, a green LED and a blue LED. Neither knows how to collaborate

or blend their light to create a cyan color on their own. They simply light

up when the correct voltage is applied. The intelligence to make them

work together, to adjust their brightness and achieve the desired color,

lies with us. We design the circuit, we provide the instructions, and it’s

through our guidance that these ”laborers” fulfill their purpose.

I applied this same principle early on, combining different circuits and

components to create devices with new, unique functions. This hands-

on experimentation not only fueled my creativity but also expanded my

knowledge of circuits, integrated circuits (ICs), sensors, and eventually

coding. However, in 2023, I discovered something that took my un-

derstanding to the next level—a development by two visionary minds,

Keenan Wyrobek and Eric Berger. These two pioneers, who shared my

passion for robotics and scientific innovation, were far ahead of me in

their realization of just how challenging robotics development can be.

With so many components at play, countless things can go wrong, and

only a few will function as intended. They referred to this ongoing strug-

gle as ”reinventing the wheel”—a concept that resonated deeply with my

3

own experiences in building and troubleshooting complex systems.

Imagine if, every time you made a pizza, you had to buy a farm,

grow the grains, make the dough, and ferment the cheese yourself. It

would take forever! Instead, we buy ingredients from the store and make

the pizza. Wyrobek and Berger applied the same logic to robotics by

creating ROS (Robot Operating System), which allows different parts (or

”laborers”) to communicate with each other. The best part is that you

don’t need to reinvent the wheel—someone else has already created it,

and you can focus on putting the parts together to build complex systems

or robots.

In 2023, I started working with my professor, Prof. Dr.-Ing. Jan

Hanno Carstens, on developing a robot for his company. I was forced to

learn ROS because we were using it for our project. It took me a long

time, partly because I found the ROS documentation a bit overwhelming,

and I wasn’t sure where to start. So, during my vacation, I decided to

document everything I had learned in this book, using one of my favorite

approaches to learning.

Let me explain my approach with a great example that I used in

another area of my life. When I came to Germany, I had to learn the

German language to study at a prestigious German university. Learning

a language was a big challenge for me because my mind works logically,

If something doesn’t make sense, I find it hard to learn. Languages don’t

have formulas you can memorize and then pass an exam the next day.

You need to invest time every day for at least a year or two to become

fluent.

But I didn’t have that kind of time, so I developed a strategy. I

realized that while German may have thousands of verbs, only a few

hundred are used in daily conversation, especially in an engineering

context. By focusing on these 200–300 verbs, I was able to learn the

language quickly. This approach worked—I earned a scholarship, got

a job at my university, and competed successfully with native German

speakers.

That’s exactly what I’m doing with this book. I’ve compiled all the

most common ROS commands and concepts you’ll need to get started

quickly. This book is for people who want to learn ROS but don’t have

a year to study—they have a job starting next week! By going through

this book, they can probably manage just fine.

In my next book, I plan to present 10 ROS projects that I created,

4

ranging from simple to complex, to show you how to apply ROS in

real-world scenarios.

5

Abstract

This book is designed to offer an accelerated yet comprehensive intro-

duction to the Robot Operating System (ROS), aimed at individuals who,

like myself, may not have the luxury of years to master a complex sys-

tem. Whether you’re a researcher, engineer, or hobbyist, ROS provides

a powerful framework that allows you to focus on innovation without

constantly ”reinventing the wheel.”

ROS emerged from a fundamental need to streamline the develop-

ment of robotics systems—a challenge that has resonated with roboticists

for years. In this book, I trace the origins of ROS, from its creation by

Keenan Wyrobek and Eric Berger as a solution to the inefficiency of

duplicating low-level code for every new robotics project, to its present

status as a global standard in the field. The opening chapters explain how

ROS was born from a desire to enable developers to focus on building

intelligent algorithms, rather than repeatedly coding the same infrastruc-

ture from scratch.

At its core, ROS is a middleware—a system that sits between the

robot’s hardware and the software, providing modular tools that allow

components to communicate seamlessly. The book introduces key con-

cepts like nodes, topics, services, and actions, explaining how each el-

ement plays a role in building complex systems with reusable, scalable,

and efficient components. By drawing on these building blocks, you’ll

learn how to write robotics software that’s both powerful and adaptable,

without needing to start from scratch for every project.

After introducing the ROS framework, the book walks you through

setting up your ROS development environment, using step-by-step in-

structions that focus on simplicity and clarity. You’ll learn how to install

ROS Noetic, create workspaces, and develop your first ROS publisher

and subscriber scripts. These initial projects will get you up and running

quickly, providing practical experience in managing nodes, publishing

data to topics, and processing messages in real-time.

Moving beyond the basics, the book delves into more advanced con-

cepts such as ROS services and actions, parameter servers, and how to

record and play back data using ROS bag files. Each concept is broken

down with clear explanations and practical examples, ensuring that you

7

can apply these tools in real-world scenarios.

Throughout the book, my goal is to minimize the steep learning curve

that often comes with ROS. Drawing from my own experience, I’ve

compiled a list of essential commands, functions, and best practices that

will help you navigate the ROS ecosystem efficiently. The final chapters

explore how to use launch files to simplify the process of running multiple

nodes, and how to manage your workspace in a way that scales as your

projects grow more complex.

With the help of this book, you’ll not only grasp the fundamentals

of ROS but also gain the confidence to start applying your knowledge

immediately. In much the same way I approached learning German

by focusing on its most essential elements, this book offers a targeted

approach to learning ROS—distilling the vast and often complex docu-

mentation into the core concepts and commands that will get you up and

running quickly.

For those eager to move beyond the basics, stay tuned for my next

book, where I will dive into 10 real-world ROS projects—demonstrating

how to build everything from simple robots to fully autonomous systems

using the power of ROS.

8

Contents

1 What is ROS? 19

1.1 History of ROS . 20

1.1.1 The Stanford Period 20

1.1.2 Building the Foundation 21

1.2 Challenges in Robotics Development 22

1.3 The Birth of ROS . 23

1.4 What ROS Is and Isn’t 24

1.5 Why Learn ROS? . 25

1.5.1 Open Source 25

1.5.2 Reusability and Modularity 25

1.5.3 Support for Development Tools 25

1.5.4 Rapid Testing and Prototyping 26

1.6 Languages Supported by ROS 26

1.6.1 Officially Supported Languages 26

1.6.2 Community-Driven Libraries 27

1.7 Conclusion . 27

2 Environment Setup 29

2.1 Introduction . 30

2.2 Installing Ubuntu . 30

2.2.1 Windows Setup 30

2.2.2 macOS Setup 30

2.3 Other Installation Methods 31

2.4 Installing a Code Editor 31

2.5 Conclusion . 32

3 Installing ROS Noetic 33

3.1 Introduction . 34

9

CONTENTS

3.2 Installation . 34

3.3 Conclusion . 37

4 ROS Framework Overview 39

4.1 Introduction . 40

4.2 ROS Master . 40

4.3 Nodes . 40

4.3.1 How Nodes Communicate 41

4.3.2 Node Lifecycle 43

4.4 Topics . 43

4.4.1 How Topics Work 44

4.4.2 Example of Topics in Action 44

4.4.3 Node vs Topic: Key Differences 45

4.4.4 Analogy: Nodes and Topics 46

4.5 Services . 46

4.6 Actions . 47

4.7 Parameter Server . 48

4.8 Bag Files . 49

4.9 Packages . 49

4.10 Conclusion . 50

5 ROS Workspace Setup 51

5.1 Introduction . 52

5.2 Understanding ROS Workspace Structure 52

5.3 Visualizing Workspace Structure 53

5.4 Creating the Workspace in Ubuntu 53

5.4.1 Step 1: Create Workspace Directory 53

5.4.2 Step 2: Create a ROS Package 54

5.4.3 Step 3: Create Scripts Folder 54

5.5 Compiling the Workspace 54

5.6 Final Workspace Structure 55

5.7 Recap . 55

6 Coding a ROS Publisher 57

6.1 Introduction . 58

6.2 Writing the Publisher Script 58

6.2.1 Importing ROS Libraries 58

6.2.2 Creating the Main Function 58

6.2.3 Initializing the ROS Node 59

10

CONTENTS

6.2.4 Creating a ROS Publisher 60

6.2.5 Setting the Publish Rate 60

6.2.6 Publishing the Message 61

6.2.7 Importing the Required Message Type 61

6.3 Summary Table of Functions 62

6.4 Verifying the Publisher with ROS Commands 62

6.4.1 Listing Active Nodes 62

6.4.2 Listing Topics 63

6.4.3 Echoing Topic Messages 63

6.4.4 Getting Topic Information 64

6.4.5 Monitoring Publish Rate 64

6.4.6 Stopping the Publisher 65

6.5 Summary Table of ROS Commands 66

7 Coding a ROS Subscriber 67

7.1 Introduction . 68

7.2 Writing the Subscriber Script 68

7.2.1 Importing ROS Libraries 68

7.2.2 Defining the Main Function 69

7.2.3 Initializing the ROS Node 69

7.2.4 Creating a ROS Subscriber 69

7.2.5 Defining the Callback Function 70

7.3 Summary Table of ROS Subscriber Functions 71

8 ROS Message Types 73

8.1 Introduction . 74

8.2 Overview of ROS Message Types 74

8.2.1 Standard Message Types 74

8.2.2 Custom Message Types 75

8.3 Using Sensor Message Types 75

8.3.1 Example: Publishing LaserScan Data 75

8.4 Using Geometry Message Types 76

8.4.1 Example: Using Vector3 Message 76

8.5 4. Summary Table of Functions 78

8.6 Conclusion . 78

9 Your First Project in ROS 79

9.1 Introduction . 80

9.2 Project Overview . 80

11

CONTENTS

9.2.1 Mathematical Concept: Transformation Matrix . 80

9.3 Creating the ROS Package and Workspace 81

9.4 Project Breakdown . 83

10 Solution to Your First Project 85

10.1 Introduction . 86

10.2 Writing the Publisher Script 86

10.2.1 Importing Required Libraries 86

10.2.2 Initializing the Publisher Node 86

10.2.3 Publishing Random Velocities 87

10.2.4 Complete Publisher Script 88

10.3 Writing the Subscriber Script 89

10.3.1 Importing Required Libraries 89

10.3.2 Transformation Matrix and Velocity Calculations 90

10.3.3 Defining the Subscriber Callback Function . . . 92

10.3.4 Complete Subscriber Script 93

10.4 Conclusion . 95

11 ROS Parameters 97

11.1 Introduction . 98

11.2 Why Use the ROS Parameter Server? 98

11.3 Interacting with the Parameter Server from the Terminal 98

11.3.1 Listing Parameters 98

11.3.2 Setting and Getting Parameters 99

11.4 Saving and Loading Parameters 99

11.4.1 Dumping Parameters 100

11.4.2 Loading Parameters 100

11.4.3 When to Use Dump and Load 100

11.5 Integrating ROS Parameters into Python Code 101

11.5.1 Usingrospy.get param insubscriber script.py101

11.6 Summary Table of ROS Parameter Functions 103

12 ROS Basics 105

12.1 Introduction . 106

12.2 Sourcing a Workspace 106

12.2.1 The Need for Sourcing 106

12.2.2 Making Sourcing Automatic 107

12.3 Running ROS Nodes with rosrun 108

12.3.1 Why Tab Completion May Not Work 108

12

CONTENTS

12.4 Making Python Scripts Executable 109

12.4.1 Python Version Error 109

12.5 Dealing with Python Version Errors 110

12.5.1 Example of Updating a Script 110

12.6 Starting roscore in a Parallel Terminal 111

12.7 Summary . 112

12.8 Conclusion . 112

13 Using Launch Files in ROS 113

13.1 Introduction . 114

13.2 Creating the Launch Folder 114

13.3 Where to Place the Launch File 114

13.4 Understanding the Structure of a Launch File 115

13.4.1 Tags in Launch Files 116

13.5 Creating the Launch File 116

13.6 Modifying the Launch File 116

13.7 Running the Launch File 117

13.8 Conclusion . 118

14 Your Second Project 119

14.1 Project Overview . 120

14.2 Visualizing the Project Workflow 120

14.3 Project Requirements 121

14.4 Things to Take Care of While Doing This Project 122

14.4.1 Sourcing Your ROS Workspace 122

14.4.2 Making Python Scripts Executable 122

14.4.3 Specifying Python 3 in Your Scripts 122

14.4.4 Starting roscore in a Parallel Terminal 123

14.5 Conclusion . 123

15 Solution to Second Project 125

15.1 Introduction . 126

15.2 Creating the Launch File 126

15.2.1 Basic Structure of the Launch File 126

15.2.2 Setting Parameters 127

15.2.3 Launching the Publisher Node 127

15.2.4 Launching the Subscriber Node 128

15.2.5 Complete Launch File 128

15.3 Things to Keep in Mind [14.4] 129

13

CONTENTS

15.4 Testing the Launch File 129

15.5 Summary of Key Commands and Concepts 130

15.6 Conclusion . 130

16 ROS Bag Files 131

16.1 Introduction . 132

16.2 What are ROS Bag Files? 132

16.3 Project Overview: Temperature Sensor Simulation . . . 132

16.3.1 Things to Keep in Mind 132

16.4 Writing the Publisher Script 133

16.4.1 Importing Required Libraries 133

16.4.2 Initializing the Publisher Node 134

16.4.3 Publishing Temperature Values 134

16.4.4 Complete Publisher Script 135

16.5 Writing the Subscriber Script 136

16.5.1 Importing Required Libraries 136

16.5.2 Defining the Callback Function 137

16.5.3 Complete Subscriber Script 138

16.6 Recording a ROS Bag File 138

16.6.1 What Does it Mean to Record a Bag File? 138

16.6.2 Recording the Temperature Status Topic 139

16.7 Playing a ROS Bag File 140

16.7.1 What Does it Mean to Play a Bag File? 140

16.7.2 Playing the Test Bag File 140

16.7.3 Modifying Playback Speed 141

16.7.4 Inspecting the Bag File 142

16.8 Summary Table of ROS Bag Commands 142

16.9 Conclusion . 142

17 Exploring ROS Packages 145

17.1 Introduction . 146

17.2 Why Use ROS Packages? 146

17.3 Installing the USB Camera Package 146

17.3.1 Installing the Package viasudo apt-get install146

17.4 Verifying the Installation 147

17.4.1 Using roscd 147

17.4.2 Using rospack list-names 147

17.5 Running the USB Camera Node 148

17.5.1 Starting roscore 148

14

CONTENTS

17.5.2 Running the usb cam Node 148

17.6 Viewing Camera Output in ROS 149

17.6.1 Checking Available Topics 149

17.6.2 Echoing the Camera Data 150

17.7 Visualizing the Camera Output in RViz 150

17.7.1 Starting RViz 151

17.8 Using Launch Files for the USB Camera 151

17.8.1 Running the Launch File 151

17.9 Troubleshooting USB Camera Issues 152

17.10Summary of Commands 153

17.11Conclusion . 153

18 Services in ROS 155

18.1 Introduction to Services in ROS 156

18.2 What is a Service in ROS? 156

18.3 How Do Services Differ from Topics? 156

18.4 Why Are Services Useful? 157

18.5 ROS Services vs Other Programming Tools 158

18.6 Diagram: Client-Server Communication in ROS Services 159

18.7 Creating a Simple Service: Sum of Two Numbers 159

18.7.1 Project Overview 159

18.7.2 Creating the Service Definition 160

18.7.3 Setting Up the ROS Package 160

18.7.4 Creating the Service Definition File 161

18.7.5 Modifying the CMakeLists.txt and package.xml

Files . 162

18.7.6 Building the Package 164

18.8 Writing the Python Service Scripts 164

18.8.1 Writing the Service Server Script 165

18.8.2 Writing the Service Client Script 167

18.8.3 File Organization and Structure 171

18.9 Testing the Service . 172

18.9.1 Things to Keep in Mind 172

18.9.2 Running the Service Server 173

18.9.3 Verifying the Service 173

18.9.4 Checking Service Type 174

18.9.5 Inspecting the Service Definition 174

18.9.6 Calling the Service Manually 174

15

CONTENTS

18.9.7 Running the Client 175

18.9.8 Summary of Service Commands and Functions . 175

18.10Conclusion . 176

19 Actions in ROS 177

19.1 Introduction . 178

19.2 What Are Actions in ROS? 178

19.2.1 Basic Flow of Actions 179

19.3 Comparing Actions with Services and Topics 179

19.3.1 Topics . 179

19.3.2 Services . 180

19.3.3 Actions . 180

19.4 Why Are Actions Important? 181

19.5 Project Overview: Robot Navigation Using Actions . . . 182

19.5.1 Conceptual Approach 182

19.5.2 Defining the Action File 183

19.5.3 Modifying the Package Configuration 184

19.5.4 Things to Keep in Mind 186

19.5.5 File Structure 186

19.6 Writing the Action Server Script 188

19.6.1 Importing Required Libraries 188

19.6.2 Initializing the Action Server and Subscribers . . 189

19.6.3 Defining the Callback Function for Action Goal . 189

19.6.4 Updating the Robot’s Position 190

19.6.5 Running the Action Server 191

19.6.6 Complete Action Server Script 191

19.6.7 Summary of New Functions and Commands . . 192

19.7 Writing the Python Action Client Script 193

19.7.1 Importing Required Libraries 193

19.7.2 Defining the Feedback Callback Function 194

19.7.3 Defining the Action Client Function 194

19.7.4 Running the Client Script 196

19.7.5 Complete Action Client Script 198

19.7.6 Summary of New Functions and Commands . . 199

19.8 Writing the Robot State Publisher Script 199

19.8.1 Importing Required Libraries 199

19.8.2 Defining the Publisher Function 200

19.8.3 Running the Publisher Script 201

16

CONTENTS

19.8.4 Complete Robot State Publisher Script 202

19.8.5 Summary of New Functions and Commands . . 204

19.9 Running the Action Nodes and Testing the System 204

19.9.1 Starting the Action Server 204

19.9.2 Starting the Robot State Publisher 205

19.9.3 Running the Action Client 205

19.9.4 Monitoring the Feedback and Result 205

19.9.5 Shutting Down the Nodes 206

19.9.6 Things to Keep in Mind 206

19.9.7 Summary of New Commands and Functions . . 207

19.10 Conclusion . 207

20 ROS Functions & Commands 209

Reference 217

Bibliography 227

17

List of Figures

1.1 Analogy of Reinventing the Wheel vs. Building on Ex-

isting Work . 21

1.2 Robotic Development Workflow: Even a simple task like

a blinking light requires numerous steps. 23

4.1 Nodes communicate through the ROS Master 41

4.2 Nodes Communicating with Each Other through the

ROS Master . 42

4.3 Node Lifecycle in ROS 43

4.4 Publisher-Subscriber Communication in ROS 44

4.5 Multiple Nodes Communicating via Topics in ROS . . . 45

4.6 Analogy: Departments (Nodes) Communicate Through

Mailing System (Topics) 46

4.7 Client-Server Communication for Services 47

4.8 Action Client-Server Communication 48

14.1 Project Workflow Diagram 121

18.1 Client-Server Communication Diagram 159

19.1 Action Communication Workflow 179

18

1

What is ROS?

19

CHAPTER 1. WHAT IS ROS?

1.1 History of ROS

ROS (Robot Operating System) has become a standard in the field

of robotics, widely adopted by researchers, hobbyists, and even large

robotics companies. But the path to its current success was not straight-

forward. The history of ROS goes back to the mid-2000s, and its begin-

nings were humble, born out of the need to solve a common problem in

robotics.

1.1.1 The Stanford Period

ROS started as a personal project of Keenan Wyrobek and Eric Berger

while they were at Stanford University. During that time, robotics de-

velopment faced a serious challenge: developers had to spend too much

time reinventing basic software infrastructure, such as sensor drivers and

actuator controllers, for every new project. As a result, there was little

time left for developing advanced robotic intelligence.

Even within the same organizations, developers would re-implement

these core systems for each project. This situation was frustrating for

robotics engineers, including Keenan and Eric, who wanted to focus on

developing complex robotic algorithms instead of constantly rebuilding

the wheel.

What does ”Reinventing the Wheel” Mean?

”Reinventing the wheel” refers to the unnecessary duplication of work

by recreating something that already exists. In the case of robotics, this

meant writing the same code for basic robot functionality over and over

again, instead of building upon previous work.

20

CHAPTER 1. WHAT IS ROS?

Analogy: Reinventing the Wheel

Imagine your father plants a tree and waters it every day for

his entire life. By the time he’s 60, the tree is large and bears

delicious fruit. However, instead of continuing to nurture this

tree, you decide to plant your own tree from scratch. This new

tree takes years to grow, while your father’s tree could have been

even more fruitful with a little extra care.

This is the essence of what ROS aimed to solve. Instead of each

robotics project starting from scratch, developers could build

upon the infrastructure created by others, allowing them to focus

on creating smarter, more complex robots.

Father plants

a tree

Son continues to

nurture the tree

Son plants

a new tree

(Reinvents

the wheel)
Grows faster

Slower progress

Figure 1.1: Analogy of Reinventing the Wheel vs. Building on Existing

Work

In 2006, Keenan and Eric founded the Stanford Personal Robotics

Program to address this issue. Their goal was to create a framework that

allowed different processes (nodes) to communicate with each other and

provide tools to help build code on top of this foundation. The testbed

for this framework was a robot they built, known as the Personal Robot.

They created 10 of these robots and distributed them to universities for

development and testing purposes.

1.1.2 Building the Foundation

The Stanford Personal Robotics Program laid the foundation for ROS.

The key idea was to have a common framework where developers could

21

CHAPTER 1. WHAT IS ROS?

share software components, such as drivers and communication systems.

This would allow roboticists to focus on creating smarter, more innova-

tive applications rather than rewriting basic infrastructure. ROS was

designed to scale and adapt to different robots and environments.

The Foundation of ROS

The Stanford Personal Robotics Program aimed to create a uni-

versal framework for robot development. This framework al-

lowed different robot processes to communicate seamlessly, and

it came with tools to build code on top of the existing infrastruc-

ture. The robot built for this program, the Personal Robot, was

distributed to universities to promote ROS development.

The idea was simple but revolutionary: let roboticists collaborate and

build on top of each other’s work. Much like the analogy of the father’s

tree, ROS would allow developers to nurture and grow from the work

already done by others, avoiding the pitfalls of reinvention.

The development of ROS during the Stanford Period is well docu-

mented. The vision was clearly laid out in a fundraising deck from 2006,

which highlighted the need to stop reinventing the wheel and instead

build a reusable framework for robotics software.

1.2 Challenges in Robotics Development

Building robots is inherently complex due to the wide range of hardware

and software involved. Historically, roboticists often faced the challenge

of writing every piece of the operating code from scratch, typically in

low-level languages like C. Even simple tasks, such as making a light

blink, could take weeks of effort due to the numerous components in-

volved.

Example: Imagine trying to code a blinking light indicator for your

robot. You would need to:

22

CHAPTER 1. WHAT IS ROS?

Challenges in Coding a Blinking Light Indicator

• Create the firmware controller: Write the low-level code

to manage the microcontroller.

• Manage serial communications: Ensure the microcon-

troller can communicate with a host computer.

• Create higher-level software nodes: Build logic to de-

cide when the light should blink.

• Develop debugging and visualization tools: Ensure all

the sensors, actuators, and code are functioning correctly.

This entire process represents a significant time and effort investment

for what should be a simple task.

Create Firmware

Controller

Manage Serial

Communication

Develop

High-Level

Software Nodes

Debugging and

Visualization

Figure 1.2: Robotic Development Workflow: Even a simple task like a

blinking light requires numerous steps.

The complexity doesn’t stop here. For each new project or robot,

engineers often had to repeat these steps. This process of ”reinventing the

wheel” for every project significantly slowed down the pace of robotics

development, which led to the birth of ROS.

1.3 The Birth of ROS

The challenge of re-implementing basic robotic functionality for every

project led to the creation of ROS (Robot Operating System). Born as

an open-source middleware, ROS provides a set of standardized tools

and libraries that drastically reduce the time needed to develop robotic

systems.

Initially developed at Stanford University in 2006 as part of the

Stanford Personal Robotics Program, ROS was created with the goal

of offering reusable software infrastructure, enabling researchers and

23

CHAPTER 1. WHAT IS ROS?

developers to focus on building intelligent systems, instead of wasting

time on reimplementing low-level drivers and communication protocols.

ROS simplifies robotic development by providing:

Key Benefits of ROS

• Open-source: Freely accessible, allowing for global col-

laboration.

• Reduced development time: Built-in tools, drivers, and

libraries for common robotics tasks.

• Modular design: Promotes reusable components and al-

lows for easy system scaling.

• Platform independence: Initially developed for Linux,

ROS now has experimental support for macOS and Win-

dows.

1.4 What ROS Is and Isn’t

ROS is often misunderstood as a traditional operating system, but it is

more accurately described as a meta-operating system or middleware.

Key Benefits of ROS is:

• An open-source middleware that sits on top of a tradi-

tional operating system (like Ubuntu).

• A development environment with tools for building

robotic systems, including visualization (Rviz), commu-

nication libraries, and introspection tools.

• A packaging system that supports the distribution of robot

software in reusable modules. ROS uses the colcon com-

mand to build and manage these packages.

24

CHAPTER 1. WHAT IS ROS?

ROS is not:

• A computer operating system. It is not a replacement for

Linux, macOS, or Windows. It runs on top of these OSs.

• A programming language. ROS programs are written

in languages like C++ and Python. Other experimental

languages include Java, Lisp, and Octave.

• A hard real-time environment. ROS is not suitable for

systems requiring hard real-time constraints.

• A development environment. ROS is used with existing

IDEs or text editors like Sublime or VSCode.

1.5 Why Learn ROS?

ROS has emerged as the standard framework for developing robotic

systems due to several key advantages.

1.5.1 Open Source

ROS is entirely open-source, which means the community is constantly

contributing to and improving the software. The collaborative nature of

ROS allows developers to share their work, learn from each other, and

continuously improve robotic development worldwide.

1.5.2 Reusability and Modularity

With ROS, you don’t have to start from scratch every time. The frame-

work provides numerous open-sourced tools and libraries, which allow

developers to easily contribute, adapt, and share software.

1.5.3 Support for Development Tools

ROS comes with built-in tools to assist with development. For example:

25

CHAPTER 1. WHAT IS ROS?

Development Tools Examples:

• Rviz: A 2D/3D visualization tool for representing robot

data like sensor information and environments.

• Gazebo: A simulation tool that allows you to test robotic

systems in a virtual environment before deploying on ac-

tual hardware.

1.5.4 Rapid Testing and Prototyping

ROS provides a platform where you can quickly prototype robotic sys-

tems using simulators like Gazebo or test data using bag files (rosbags).

This allows you to refine your system design before deploying it to the

physical robot.

1.6 Languages Supported by ROS

ROS natively supports several programming languages, providing flexi-

bility to developers based on their needs.

1.6.1 Officially Supported Languages

ROS is primarily used with:

Officially Supported Languages

• C++: Often used for performance-critical tasks in robotics

due to its speed and control over hardware.

• Python: Highly popular for writing simple and quick

scripts, offering ease of use and rapid development.

• Lisp: Historically supported but less commonly used in

modern ROS applications.

26

CHAPTER 1. WHAT IS ROS?

1.6.2 Community-Driven Libraries

ROS also has community-driven support for additional languages, en-

abling greater flexibility for developers.

Community-Driven Libraries

• Java: Enables the integration of robotics into Java-based

systems.

• JavaScript: Can be used in web-based applications for

robotics control.

• Lua: A lightweight scripting language useful for specific

robotic tasks.

1.7 Conclusion

With the vast amount of existing ROS 1 libraries and new features in ROS

2, roboticists can leverage these tools to develop powerful and scalable

robotic systems. ROS is already a major player in the robotics field, and

learning it will significantly enhance your ability to create and deploy

robotics solutions efficiently.

Let’s dive deeper into ROS and explore its capabilities!

27

CHAPTER 1. WHAT IS ROS?

28

	What is ROS?
	History of ROS
	The Stanford Period
	Building the Foundation

	Challenges in Robotics Development
	The Birth of ROS
	What ROS Is and Isn't
	Why Learn ROS?
	Open Source
	Reusability and Modularity
	Support for Development Tools
	Rapid Testing and Prototyping

	Languages Supported by ROS
	Officially Supported Languages
	Community-Driven Libraries

	Conclusion

